13^2+5^2=c^2

Simple and best practice solution for 13^2+5^2=c^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 13^2+5^2=c^2 equation:



13^2+5^2=c^2
We move all terms to the left:
13^2+5^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+194=0
a = -1; b = 0; c = +194;
Δ = b2-4ac
Δ = 02-4·(-1)·194
Δ = 776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{776}=\sqrt{4*194}=\sqrt{4}*\sqrt{194}=2\sqrt{194}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{194}}{2*-1}=\frac{0-2\sqrt{194}}{-2} =-\frac{2\sqrt{194}}{-2} =-\frac{\sqrt{194}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{194}}{2*-1}=\frac{0+2\sqrt{194}}{-2} =\frac{2\sqrt{194}}{-2} =\frac{\sqrt{194}}{-1} $

See similar equations:

| 12(n+9)=120 | | 4x*10=90 | | x-5/6=-5/64 | | 3w=99 | | a^2+(^2=15^2 | | 9.1-6a=-7.7 | | 53-7x=31 | | 672=(2x-8)(x+8) | | -16+61=-5(x+2) | | -11b+7=40b= | | 1/10n=108 | | 18x+30=6(2x1) | | (3/5)a=9 | | 18=-12+6b | | 10+7n=59 | | -0.5(x-4)=3 | | 8-c2=5 | | 5x-6=14x-33 | | n+21=86 | | 24/j+5=11 | | 2/7k-24=-18 | | y/4+7/12=y/3 | | x+4+5x+11=180 | | x+Y/2=450000 | | 3/4=12/x+6 | | 3^3x-1=9 | | 4n+4=6.8 | | -48=0.2m | | 2(n+68)=144 | | 12d+3-9d=18-6d | | 2/9x+-1/3=-1 | | 5c+1=3(3+c) |

Equations solver categories